拼音zhǎn zhuǎn xiāng chú fǎ
注音ㄓㄢˇ ㄓㄨㄢˇ ㄒㄧㄤ ㄔㄨˊ ㄈㄚˇ
繁体輾轉相除法
◎求两个正整数的最大公约数的算法。设两数为a、b(b<a),求它们最大公约数(a、b)的步骤如下:用b除a,得a=bq1+r1(0≤r1<b)。若r1=0,则(a,b)=b;若r1≠0,则再用r1除b,得b=r1q2+r2(0≤r2<r1)。若r2=0,则(a,b)=r1,若r2≠0,则继续用r2除r1,……如此下去,直到能整除为止。其最后一个非零余数即为(a,b)。类似地,求两个多项式的最高公因式也可用此法。
◎数学上一种求两正整数最大公约数的方法。
1、摘要求两个多项式的最大公因式,可以用辗转相除法及分解因式法。
2、众所周知通常求二元一次不定方程的整数解的方法有辗转相除法,矩阵方法和求连分数的渐近分数等方法。